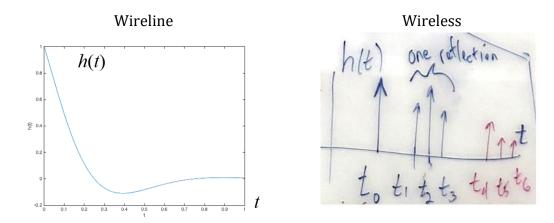
Nov. 4, 2020

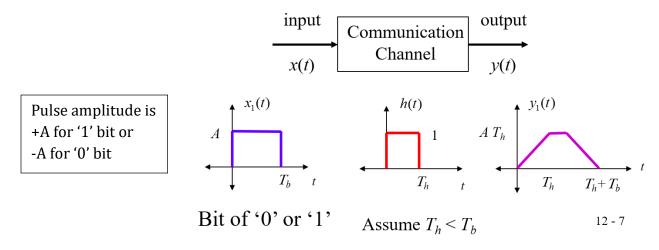
[10:30] Channel Impairments (Lecture 12)

- Goal: develop different models for physical communication channels
 - o Wire
 - o Air
 - Underwater
 - o Optical
- Several steps occur between baseband processing at transmitter and receiver
 - Carrier circuits at transmitter
 - Physical channel
 - Carrier circuits at receiver
- Propagating signal quality degrades with distance traveled
- Physical channel can be modeled as a convolution
 - Leads to spreading over time
 - Leads to attenuation over distance
- Repeaters can be used to control the reduction in signal quality

[10:40] Impairment #1: Additive thermal noise


- Use central limit theorem to model random motion of elections as Gaussian
- At each point in time t_0 the noise is a random variable $n(t_0)$
- Many particles contribute to the noise. Model each particle as a RV V_0 , V_1 , ...

$$n(t_0) = C_0(V_0 + V_1 + V_2 + \cdots)$$


- Distribution of each particle is modeled as statistically independent, zero mean.
- As number of particles goes to infinity \rightarrow sum of random variables tends to Gaussian
- Result: $n(t_0) \sim N(0, \sigma^2)$
- Variance σ^2 is the noise power

[10:55] Impairment #2: LTI effects

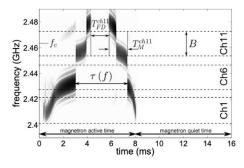
- Example: wire has resistance, capacitance, and inductance per meter
 - \circ $\,$ Model as second order IIR filter, or truncate and model as FIR $\,$
- Alternative example: modeling wave propagation
 - Received signal consists of direct and reflected paths
 - Radiated energy also affected by absorption and scattering
 - Impulse response can be modeled as set of shifted delta functions
 - Generally modeled as FIR (ignore most attenuated paths)
- LTI model captures distortion in frequency and spreading in time

- Simplified model to understand effect on PAM transmission:
 - o Model channel as LTI
 - o Truncate IIR response as FIR to capture effects in time and frequency
 - Approximate impulse response as rectangular pulse for timing analysis

[11:25] Impairment: Phase Jitter

- Time-varying linear system can be modeled as phase shift
- Example: sinusoidal signal

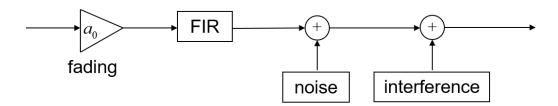
$$x(t) = \cos(2\pi f_c t) \xrightarrow{\text{Time varying linear system}} y(t) = \cos(2\pi f_c t + \Theta(t))$$


- Example #1: Visualize phase jitter in *y*(*t*) by superimposing the second period on the first period, third period on the first period, etc. Matlab demo on Slide 12-9.
- Example #2: 2-PAM example: $x(t) = a_n \cos(2\pi f_c t)$. +1 for 0 bit -1 for 1 bit
- Visualize phase jitter in $y(t) = a_n \cos(2\pi f_c t + \Theta(t))$ by superimposing the second period on the first, third period on the first, etc. Matlab demo on Slide 12-10

[11:35] Additive interference

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/12 Channel Impairment s/announcements.html

- Nonlinear effects: Harmonics, additive noise, interference, and can be time-varying
- Interference can be narrowband or broadband, periodic or asynchronous
- Microwave oven can interfere with Wi-Fi and other transmissions in 2.4 GHz band:


Spectrogram of emissions from a microwave oven in unlicensed 2.4 GHz band sweeping across IEEE 802.11g Wi-Fi channels 1, 6, 11 [Nassar, Lin & Evans, 2011]

- Powerline background noise is often spectrally shaped (1/frequency)
- Periodic impulsive noise in power lines
 - Synchronous to the main powerline frequency (50 Hz or 60 Hz)
 - Appear at the same instant of the AC cycle.
 - Example sources: silicon-controlled rectifiers and diodes that switch on and off with the AC cycle while generating abrupt switching transients.
 - Asynchronous to the main powerline frequency (50 Hz or 60 Hz)
 - Impulsive interference (high-amplitude impulse trains) with repetition rates unrelated to the main powerline frequency.
 - Primarily injected by switching mode power supplies that operate at frequencies above 10 kHz.

[11:50] Full model of channel impairments

• Fading is a time-varying effect due to changes in the electromagnetic environment, e.g. from motion of transmitter and/or receiver.

